PIBEA: Prospect Indicator Based Evolutionary Algorithm for Multiobjective Optimization Problems
نویسندگان
چکیده
This paper proposes and evaluates an evolutionary multiobjective optimization algorithm (EMOA) that uses a new quality indicator, called the prospect indicator, for parent selection and environmental selection operators. The prospect indicator measures the potential of each individual to reproduce offspring that dominate itself and spread out in the objective space. The prospect indicator allows the proposed EMOA, PIBEA (Prospect Indicator Based Evolutionary Algorithm), to (1) maintain sufficient selection pressure, even in high dimensional MOPs, thereby improving convergence velocity toward the Pareto front, and (2) diversify individuals, even in high dimensional MOPs, thereby distributing individuals uniformly in the objective space. Experimental results show that PIBEA effectively performs its operators in high dimensional problems and outperforms three existing well-known EMOAs, NSGA-II, SPEA2 and AbYSS, in terms of convergence velocity, diversity of individuals, coverage of the Pareto front and performance stability.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملBIBEA: Boosted Indicator Based Evolutionary Algorithm for Multiobjective Optimization
Various evolutionary multiobjective optimization algorithms (EMOAs) have replaced or augmented the notion of dominance with quality indicators and leveraged them in selection operators. Recent studies show that indicator-based EMOAs outperform traditional dominance-based EMOAs. Many quality indicators have been proposed with the intention to capture different preferences in optimization. Theref...
متن کاملA Hypervolume-Based Optimizer for High-Dimensional Objective Spaces
In the field of evolutionary multiobjective optimization, the hypervolume indicator is the only single set quality measure that is known to be strictly monotonic with regard to Pareto dominance. This property is of high interest and relevance for multiobjective search involving a large number of objective functions. However, the high computational effort required for calculating the indicator v...
متن کاملR2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection
An indicator-based evolutionary multiobjective optimization algorithm (EMOA) is introduced which incorporates the contribution to the unary R2-indicator as the secondary selection criterion. First experiments indicate that the R2-EMOA accurately approximates the Pareto front of the considered continuous multiobjective optimization problems. Furthermore, decision makers’ preferences can be inclu...
متن کاملHypervolume-Based Search for Multiobjective Optimization: Theory and Methods
xi Zusammenfassung xiii Statement of Contributions xv Acknowledgments xvii List of Symbols and Abbreviations xvii Introduction . Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . .. Multiobjective Problems . . . . . . . . . . . . . . . . . . . .. Selecting the Best Solutions . . . . . . . . . . . . . . . . . .. The Hypervolume Indicator . . . . . . . . . ...
متن کامل